

Published on Web 09/12/2006

Facile $Ar-CF_3$ Bond Formation at Pd. Strikingly Different Outcomes of Reductive Elimination from [(Ph₃P)₂Pd(CF₃)Ph] and [(Xantphos)Pd(CF₃)Ph]

Vladimir V. Grushin* and William J. Marshall

Central Research & Development, E. I. DuPont de Nemours and Co., Inc.,[†] Experimental Station, Wilmington, Delaware 19880-0328

Received July 11, 2006; E-mail: vlad.grushin-1@usa.dupont.com

Biological activity is commonly exhibited by selectively fluorinated molecules. "As many as 30-40% of agrochemicals and 20% of pharmaceuticals on the market are estimated to contain fluorine, including half of the top 10 drugs sold in 2005."¹ Hence, the demand for new reactions to introduce fluorine and fluorine-containing groups into organic molecules is increasingly high.¹ New methods to selectively fluorinate and trifluoromethylate aromatic compounds are particularly important and intensely sought. Although a few interesting findings have recently been reported,²⁻⁴ the problem is far from being solved and still represents a major synthetic challenge.

As an alternative to the Swarts reaction,⁵ it would be desirable to develop Pd-catalyzed coupling of haloarenes with a CF₃transferring nucleophile, for example Ruppert's reagent, CF₃SiMe₃. Such process must involve Ar-CF3 reductive elimination from Pd(II) as the key product forming step. The feasibility of this step, however, is in question because late transition metal-CF₃ bonds are generally strong and notoriously inert.⁶ Unlike [(LL)Pd(CH₃)-(Ph)] (LL = dppe⁷ or dppp⁸) that reductively eliminate toluene at as low as 15-40 °C, their CF₃ congeners [(dppbz)Pd(CF₃)(o-Tol)]⁹ and $[(LL)Pd(CF_3)(Ph)]$ (LL = dppe or dppp)¹⁰ do not produce ArCF₃ for days at 130 °C. Only at 145 °C was the low-yield formation of PhCF₃ from the dppe and dppp complexes observed as a result of the sluggish and poorly selective reaction.¹⁰ In this communication, we describe the first example of facile and clean CF₃-Ar reductive elimination from a Pd(II) complex under mild conditions.

Trifluoromethyl palladium aryls reported to date are all derivatives of strongly chelating bidentate ligands.^{9,10} In this work, we prepared analogous complexes, stabilized by a monodentate phosphine and a trans-chelating phosphine, to determine how these ligands would influence the ability of the Pd center to reductively eliminate Ar–CF₃. Triphenylphosphine was chosen because of the reported¹¹ formation of perfluoroalkylarenes from perfluoroalkyl iodides, iodoarenes, and Zn in the presence of [(Ph₃P)₂PdCl₂] under sonication. The choice of Xantphos as a bidentate phosphine was determined by its wide bite angle¹² and both cis- and trans-chelating ability,^{12,13} factors that are expected^{8,12} to strongly influence reductive elimination from Pd(II).¹⁴

The starting materials for the synthesis of $[(Ph_3P)_2Pd(Ph)CF_3]$ (1) and $[(Xantphos)Pd(Ph)CF_3]$ (2) were well-known $[(Ph_3P)_2Pd-(Ph)I]$ and new [(Xantphos)Pd(Ph)I] (3). The latter was prepared by reacting $[Pd_2(dba)_3]$ with Xantphos and PhI in toluene at room temperature, a standard procedure for the synthesis of various palladium aryls, including a few Xantphos derivatives.^{13,14} Complex 3 was trans in solution and in the solid state (NMR, X-ray; see Supporting Information).

Figure 1. ORTEP drawings of 4 (left) and 2 (right).

Our previous attempts¹⁰ to synthesize **1** from $[(Ph_3P)_2Pd(Ph)I]$ and CF₃SiMe₃/CsF were unsuccessful owing to facile displacement of the phosphines on Pd with the CF₃ groups.^{15a} Because **3** behaved similarly,^{15b} we attempted the synthesis of **1** and **2** from the corresponding fluorides.¹⁶ Both known $[(Ph_3P)_2Pd(Ph)F]$ and new [(Xantphos)Pd(Ph)F] (**4**) were prepared using our previously developed method for the synthesis of metal fluorides from the corresponding iodides and AgF under sonication (eq 1).¹⁷ The I/F exchange on **3** (eq 1) smoothly produced **4** that was isolated pure in 92% yield.

The new fluoride **4** was fully characterized, including ¹H, ¹⁹F, and ³¹P NMR spectra and single-crystal X-ray diffraction. In the solid state and in solution, **4** is trans, as established by the X-ray (Figure 1) and NMR data.¹⁸ Thermolysis of **4** in dry benzene under N₂ at 60 °C overnight led, as expected,¹⁹ to only P–F bond formation and no Ph-F reductive elimination.

Treatment of $[(Ph_3P)_2Pd(Ph)F]^{17}$ or **4** with CF₃SiMe₃ in benzene afforded, within the time of mixing, $[(Ph_3P)_2Pd(Ph)CF_3]$ (**1**) and $[(Xantphos)Pd(Ph)CF_3]$ (**2**), respectively. More conveniently, **1** and **2** were made without isolation of the fluoride intermediates. After the I/F exchange had gone to completion, the reaction mixtures were quickly filtered through Celite *in air*, and the filtrates were treated with CF₃SiMe₃ to afford pure **1** and **2** in high yield (eq 2). Complex **1** was trans in solution²⁰ and as a solid (X-ray; see Supporting Information). The Xantphos derivative **2** was a 10:1 mixture of cis and trans isomers in benzene but exclusively cis in more polar CH₂Cl₂ or THF and in the crystal structure (Figure 1).²⁰

$$[L_2Pd(Ph)I] \xrightarrow{1. \text{ AgF, benzene, } 20 \text{ °C, ultrasound}} [L_2Pd(Ph)CF_3] (2)$$

$$2. CF_3SiMe_3 \qquad 1 (L = PPh_3), 82\%$$

$$2 (L_2 = Xantohos), 88\%$$

[†] Contribution No. 8741.

Decomposition of **1** in the presence of PhI in benzene- d_6 at 60 °C (eq 3) gave a mixture of two complexes, $[(Ph_3P)_2Pd(Ph)I]$ (NMR) and $[Ph_4P]^+[(Ph_3P)Pd(CF_3)_3]^-$ (X-ray).²¹

$$3[(Ph_3P)_2Pd(Ph)CF_3] + 2PhI \xrightarrow{C_6D_6, 60 \circ C}$$

1
(3)

 $2[(Ph_3P)_2Pd(Ph)I] + [(Ph_4P]^+ [(Ph_3P)Pd(CF_3)_3]^- + Ph_2$

Extra PPh₃ was found to strongly inhibit reaction 3. This points to P-C reductive elimination as the first step (Scheme 1) that is known^{19,22} to require phosphine predissociation. The resulting Pd(0)species A oxidatively adds PhI to give B, followed by wellestablished¹⁰ transmetalation resulting in **C** and **D**, with the latter undergoing reductive elimination of Ph₂ to reform A. Complex C is fully expected^{15a} to easily exchange its I and PPh₃ ligands for CF₃ in the presence of a strongly nucleophilic CF₃-donor, such as A (as shown in Scheme 1) or **B**. Both byproducts of this exchange, $[(Ph_3P)_2Pd]$ and $[Ph_4P]^+[(Ph_3P)Pd(I)]^-$, transform to $[(Ph_3P)_2Pd^-$ (Ph)I] upon oxidative addition of PhI and the [Ph₄P]⁺, respectively.

In sharp contrast with 1 and $[L_2Pd(CF_3)(Ar)]$ (L₂ = dppbz,⁹ dppe,¹⁰ and dppp;¹⁰ see earlier), 2 underwent remarkably clean and smooth Ph-CF₃ reductive elimination at as low as 50-80 °C. Heating a benzene solution of 2 and Xantphos (1:1) under N₂ at 80 °C for 3 h led to the exclusive formation of PhCF₃ and [(Xantphos)₂Pd]²³ (X-ray) at ca. 100% conversion (eq 4).

$$[(Xantphos)Pd(CF_3)Ph] + Xantphos \underbrace{\begin{array}{c} C_6H_6, 80^{\circ}C, 3 \text{ h} \\ 100\% \end{array}}_{100\%} (4)$$

$$\boxed{PhCF_3} + [(Xantphos)_2Pd]$$

When the experiment was repeated using PhI in place of Xantphos as a trap for the Pd(0), the formation of Ph_2 and [(Xantphos)Pd(I)CF₃] (5; X-ray) competed with the main pathway leading to PhCF₃ and [(Xantphos)Pd(Ph)I] (3). This result was expected.¹⁰ As the Ph-CF₃ reductive elimination occurs, the Pd(0) formed oxidatively adds PhI to give [(Xantphos)Pd(Ph)I] (3). The latter and the as yet unreacted 2 undergo transmetalation¹⁰ giving rise to 5 and [(Xantphos)PdPh₂] which is transformed back to 3 via Ph-Ph reductive elimination, followed by oxidative addition of PhI. The transmetalation path is favored by higher concentrations, conversion, and temperature. At 95-100% conversion of 1, the PhCF₃ to 5 ratio was measured (¹⁹F NMR) at 2.3 (60 °C, 20 h), 2.0 (70 °C, 8 h), and 1.2 (80 °C, 2 h).

In conclusion, facile and highly selective perfluoroalkyl-aryl reductive elimination from a metal center (Pd) has been demonstrated for the first time. The role of Xantphos on Pd for the CF₃-Ph bond formation is critical.¹⁴ Replacement of the Xantphos ligand on Pd with PPh3 or cis-chelating dppbz,9 dppe,10 dppp,10 and tmeda10 blocks the Ar-CF₃ bond forming path. The dramatic change in reactivity of $[L_2Pd(Ar)CF_3]$ when going from the rigid L_2 (dppbz, dppe, dppp) to adaptable Xantphos is remarkably reminiscent of the key importance of flexibility for the reactions of cyclic iodonium cations with nucleophiles, which proceed via reductive elimination from tricoordinate iodine.24

Supporting Information Available: Experimental details, NMR data (pdf), and X-ray analysis data (cif) for 1-5, [Ph₄P]⁺[(Ph₃P)Pd-(CF₃)₃]⁻, and [(Xantphos)₂Pd]. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Thayer, A. M. Chem. Eng. News 2006, 84, (23), 15.
- Xiao, J.-C.; Ye, C.; Shreeve, J. M. Org. Lett. 2005, 7, 1963.
 Grushin, V. U.S. Pat. Appl. Publ. US 20060074261 A1, 2006.
 Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128,
- 7134 (5) The displacement of aliphatic Cl with F, first discovered by Swarts over
- (b) The displacement of an inflate CF with 1, this discovered by Swarts over 110 years ago: Swarts, F. Bull. Acad. R. Belg. 1892, 24, 309.
 (c) Hughes, R. P. Adv. Organomet. Chem. 1990, 31, 183. Morrison, J. A. Adv. Organomet. Chem. 1993, 35, 211.
 (7) Ozawa, F.; Kurihara, K.; Fujimori, M.; Hidaka, T.; Toyoshima, T.;
- Yamamoto, A. Organometallics 1989, 8, 180.
- (8) Brown, J. M.; Guiry, P. J. Inorg. Chim. Acta 1994, 220, 249.
- (9) Cultin, D. A.; Hartwig, J. F. Organometallics 2004, 22, 3398.
 (10) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 4632.
- (11) Kitazume, T.; Ishikawa, N. *Chem. Lett.* **1982**, 137.
 (12) Kamer, P. C. J.; van Leeuwen, P. W. N.; Reek, J. N. H. *Acc. Chem. Res.* 2001, 34, 895.
- (13) (a) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043. (b) Zuideveld, M. A.; Swennenhuis, B. H. G.; Boele, M. D. K.; Guari, Y.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Goubitz, K.; Fraanje, J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 2002, 2308.
- (14) During the preparation of our manuscript, a brief report appeared, describing the accelerating effect of Xantphos on reductive elimination of *N*-aryl amidates from Pd(II): Fujita, K.; Yamashita, M.; Puschmann, F.; Martinez Alvarez-Falcon, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044.
- (15) (a) Naumann, D.; Kirij, N. V.; Maggiarosa, N.; Tyrra, W.; Yagupolskii, Y. L.; Wickleder, M. S. Z. Anorg. Allg. Chem. 2004, 630, 746. (b) Treatment of 3 with CF₃SiMe₃/CsF in THF resulted in nonselective reaction and formation of large quantities of free Xantphos (³¹P NMR: -17 ppm) even at low conversions.
- (16) For the synthesis of CF₃ derivatives of metals from the corresponding fluorides and CF₃SiMe₃, see: (a) Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 3185. (b) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. J. Am. Chem. Soc. 2000, 122, 8916. (b) Taw, F. L.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2003, 125, 14712. (c) Vicente, J.; Gil-Rubio, J.; Guerrero-Leal, J.; Bautista, D. Organometallics 2004, 23, 4871; 2005, 24, 5634.
- (17) (a) Fraser, S. L.; Antipin, M. Yu.; Khroustalyov, V. N.; Grushin, V. V. J. Am. Chem. Soc. 1997, 119, 4769. (b) Pilon, M. C.; Grushin, V. V. Organometallics 1998, 17, 1774.
- (18) NMR data for 4 (C₆D₆, 25 °C): ¹⁹F: $\delta = -300.7$ ppm (br. t). ³¹P: $\delta =$
- (18) NMR data for 4 (C₂D₆, 2⁵ C₂): ¹⁹F: δ = -300.7 ppm (br. f). ³¹P: δ = 4.4 ppm (d); J_P-F = 10 Hz.
 (19) Grushin, V. V. Organometallics 2000, 19, 1888.
 (20) NMR data (benzene-d₆; 25 °C; δ). For 1: ¹H: 6.4 (m, 2H, m-PhPd); 6.6 (m, 1H, p-PhPd); 7.0 (m, 2H, o-PhPd); 7.1 (m, 18H, m, p-PhP); 7.8 (m, 12H, o-PhP), ¹⁹F: -16.1 (t, J_P-F = 13.9 Hz). ³¹P: 28.6 (q, J_P-F = 13.9 Hz). For trans-2: ¹⁹F: -13.1 (t, J_P-F = 16.0 Hz). ³¹P: 17.7 (q, J_P-F = 16.0 Hz). For cis-2: ¹⁹F: -14.6 (br m); ³¹P: 4.8 (br m, 1P); 9.6 (br x = 1P). There is no fast exchange on the NMR time scale between cis. (br s, 1P). There is no fast exchange on the NMR time scale between *cis*-and *trans*-2 in benzene at 25 °C. The ¹⁹F and ³¹P NMR spectra of 2 display sharp multiplets from *trans-2* but broadened resonances from *cis-2*. This line broadening might be due to P-site exchange via dissociation (strong The bloadening high be due to P-site exchange via dissociation (storing trans effects of both Ph and CF₃) and can be frozen out at lower temperatures. ¹⁹F NMR (CD₂Cl₂, -70 °C), δ : -17.5 (dd, trans- J_{P-F} = 48 Hz, cis- J_{P-F} = 15 Hz). ³¹P NMR (CD₂Cl₂, -70 °C), δ : 8.4 (dq, trans- J_{P-F} = 48 Hz, cis- J_{P-P} = 24 Hz, 1P); 12.6 (m, 1P). The -70 °C NMR data is fully consistent with the cis solid-state structure.
- (21) The anion $[(Ph_3P)Pd(CF_3)_3]^-$ has been previously characterized.^{15a} In the structure of the $[Ph_4P]^+$ $[(Ph_3P)Pd(CF_3)_3]^-$ from reaction 3, each CF₃ group is slightly disordered with iodide, with the percentages of CF3 being 84.3% (trans to PPh₃) and 93.2% and 89.1% (mutually trans). The sum of the iodide and CF_3 occupancies independently refined to 0.999, 1.003, and 0.997, indicating that each position is well represented by either CF3 or iodide.
- (22) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 1101.
- Klingensmith, L. M.; Strieter, E. R.; Barder, T. E.; Buchwald, S. L. Organometallics 2006, 25, 82. (23)
- (24) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315.

JA064935C